The Non-Local Bootstrap - Estimation of Uncertainty in Diffusion MRI

نویسندگان

  • Pew-Thian Yap
  • Hongyu An
  • Yasheng Chen
  • Dinggang Shen
چکیده

Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap

We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical u...

متن کامل

Estimation of the Uncertainty of Diffusion MRI Fiber Tracking Parameters with Residual Bootstrap

BACKGROUND AND MOTIVATION: A recent comparison of bootstrap approaches in the estimation of uncertainty of voxelwise DTI parameters such as FA and ADC demonstrated that the application of residual bootstrap (RB) provided an unbiased empirical non-parametric approach to characterizing the parameter uncertainty [1]. Fiber tracking (FT) based on diffusion MR has important applications for structur...

متن کامل

Determining production level under uncertainty using fuzzy simulation and bootstrap technique, a case study

In every production plant, it is necessary to have an estimation of production level. Sometimes there are many parameters affective in this estimation. In this paper, it tried to find an appropriate estimation of production level for an industrial factory called Barez in an uncertain environment. We have considered a part of production line, which has different production time for different kin...

متن کامل

Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach.

The bootstrap technique is an extremely powerful nonparametric statistical procedure for determining the uncertainty in a given statistic. However, its use in diffusion tensor MRI tractography remains virtually unexplored. This work shows how the bootstrap can be used to assign confidence to results obtained with deterministic tracking algorithms. By invoking the concept of a "tract-propagator,...

متن کامل

Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013